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A self-oscillating magnetometer based on the nonlinear magneto-optical rotation effect with sep-
arate modulated pump and unmodulated probe beams is demonstrated. This device possesses a
bandwidth exceeding 1 kHz. Pump and probe are delivered by optical fiber, facilitating minia-
turization and modularization. The magnetometer has been operated both with vertical-cavity
surface-emitting lasers (VCSELs), which are well suited to portable applications, and with conven-
tional edge-emitting diode lasers. A sensitivity of around 3 nG is achieved for a measurement time
of 1 s.

PACS numbers: 07.55.Ge,33.55.Ad

I. INTRODUCTION

Considerable progress has been made in recent years in
atomic magnetometry, including the achievement of sub-
femtotesla sensitivity [1], the application of coherent dark
states to magnetometry [2, 3], development of sensitive
atomic magnetometers for biological applications [4, 5]
and for fundamental physics [6, 7, 8, 9, 10, 11], the in-
troduction of chip-scale atomic magnetometers [12], and
the development of nonlinear magneto-optical rotation
(NMOR) using modulated light [13] with its subsequent
demonstration in the geomagnetic field range [14]. An
important potential application is to space-based mea-
surements, including measurements of planetary fields,
of the solar-wind current, and of magnetic fields in deep
space [15]. As these sensitive magnetometric techniques
move from the laboratory to applications in the field and
in space, significant new demands will naturally be placed
on their robustness, size, weight, and power consumption.
An attractive approach that addresses many of these de-
mands is the self-oscillating magnetometer configuration,
originally proposed by Bloom [16]. In this configuration,
the detected optical signal at the Larmor frequency or
a harmonic, is used to drive the magnetic resonance, ei-
ther with RF coils or, as in the present work, by optical
excitation of the resonance. When this resonant drive
is amplified sufficiently, the oscillation builds up spon-
taneously (seeded by noise) at the resonant frequency.
The spontaneous nature of the oscillation obviates the
necessity of slow preliminary scans, which would other-
wise be required to search for the resonance and lock to
the desired line. Moreover, the size, weight, and power
consumption of a self-oscillating device all benefit from
the simplification of the electronics that results from not
requiring a local oscillator or lock-in amplifier.
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FIG. 1: Diagram of experimental setup. The output of
a diode laser is split into pump and probe beams. The
laser is frequency-stabilized approximately 300 MHz below the
center of the 87Rb D2 Doppler-broadened line center via a
dichroic atomic vapor laser lock (DAVLL). The pump beam is
amplitude-modulated by an acousto-optic modulator (AOM).
Both pump and probe are delivered by optical fiber to a
paraffin-coated vapor cell. Separate polarizers allow indepen-
dent control of pump and probe polarization. The polariza-
tion rotation of the probe beam is analyzed in a balanced
polarimeter consisting of a Rochon polarizer followed by a
pair of photodiodes and an amplifier. A zero-crossing detec-
tor (Schmitt trigger) and pulser control the pump power via
the AOM, closing the loop and sustaining self-oscillation. In
an alternate configuration, separate VCSELs on the 87Rb D1
F=2 line supplied light for pump and probe.

A self-oscillating magnetometer based on NMOR was
recently reported by Schwindt et al. [17], in whose work
the functions of pumping and probing were fulfilled by a
single frequency-modulated laser beam. As a result, the
detected signal was a product both of the rotating atomic
alignment and of the modulated detuning, resulting in
a complicated waveform that required significant elec-
tronic processing before being suitable for feeding back
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to the laser modulation, as required in the self-oscillating
scheme.

In the present paper, we present a simple alternative
arrangement that avoids many of the difficulties encoun-
tered in the single-beam experiment. Indeed, by the use
of two laser beams–a modulated pump and an unmodu-
lated probe–the optical-rotation signal may be made ac-
curately sinusoidal, avoiding the complexity of digital or
other variable-frequency filters in the feedback loop. Im-
portantly, the use of two beams also permits optical ad-
justment of the relative phase of the detected signal and
the driving modulation by changing the angle between
their respective linear polarizations. For magnetometry
at large bias field and requiring a wide range of fields,
this optical tuning of the feedback-loop phase promises
both good long-term stability and much greater unifor-
mity with respect to frequency than can readily be ob-
tained with an electronic phase shift.

II. NMOR RESONANCE

Detailed discussions of zero-field NMOR resonances
[13, 18], as well as of the additional finite-field resonances
that occur when the pumping laser light is frequency-
modulated (FM) [19] or amplitude-modulated (AM) [20],
have been presented in prior work. An NMOR reso-
nance occurs when optical pumping causes an atomic
vapor to become dichroic (or birefringent), so that subse-
quent probe light experiences polarization rotation. For
the resonances considered in this work, both pump and
probe are linearly polarized and therefore primarily pro-
duce and detect atomic alignment (∆m = 2 coherences).
The magnetic-field dependence originates from the fact
that the atomic spins undergo Larmor precession, so that
weak optical pumping can only produce a macroscopic
alignment when the Larmor precession frequency is small
compared to the spin relaxation rate, or alternatively
when pumping is nearly synchronous with precession, as
in FM or AM NMOR.

If the optical-pumping rate is modulated at a frequency
ν, then the optical-rotation angle of the probe polariza-
tion will in general also oscillate at frequency ν. If this
frequency is scanned across the resonance (in open-loop
configuration, i.e. with no feedback from the optical-
rotation signal), then the NMOR resonance will manifest
itself as a resonant peak in the rotation-angle amplitude
of the probe polarization on the output. Assuming the
in-going probe and pump polarizations to be parallel, the
amplitude and phase of the observed rotation signal can
be described by the complex Lorentzian (δ − iγ/2)−1,
where δ ≡ 2π(ν − 2νL) is the detuning from resonance, γ
is the full width (in modulation frequency) at half max-
imum of the resonance, and νL is the Larmor frequency.
The phase shift relative to the pump modulation as a
function of δ is seen by taking the argument of this com-

plex Lorentzian to be

φ =
π

2
+ tan−1

(

2δ

γ

)

. (1)

This elementary relation, which is the same as for a
damped harmonic oscillator, will be referred to frequently
in subsequent sections.

III. APPARATUS

The experimental apparatus, shown schematically
in Fig. 1, consists of a cylindrical paraffin-coated
87Rb vapor cell 2 cm in diameter and length traversed by
linearly-polarized pump and probe laser beams. These
beams were supplied by a single external-cavity diode
laser on the D2 line of rubidium, frequency-stabilized
∼ 300 MHz below the center of the F = 2 −→ F ′

Doppler-broadened line by means of a dichroic atomic
vapor laser lock [21, 22]. The probe beam was left un-
modulated, while the pump was amplitude modulated
with an acousto-optic modulator (AOM). Pump and
probe were delivered to the cell by separate polarization-
maintaining fibers. After exiting the cell, the pump beam
was blocked and the probe analyzed by a balanced po-
larimeter consisting of a Rochon polarizing beam-splitter
and a pair of photodiodes. The difference photocurrent
was amplified with a low-noise transimpedance amplifier
(Stanford Research Model SR570) and passed through
a resonant LC filter centered at 20 kHz with a band-
width of 11 kHz, much wider than either the NMOR reso-
nance (∼ 80 Hz) or the desired magnetometer bandwidth
(∼ 1 kHz). This filter reduced jitter in the frequency-
counter readings, but is not necessary in principle. The
pump modulation was derived from this amplified signal,
closing the feedback loop, by triggering a pulse gener-
ator on the negative-going zero-crossings of the signal,
and allowing these pulses to switch on and off the ra-
diofrequency power delivered to the AOM. The pulse
duty cycle was approximately 15%. For characterization
of the magnetometer in the laboratory, the vapor cell
was placed in a three-layer cylindrical magnetic shield,
provided with internal coils for the generation of a sta-
ble, well-defined magnetic bias field and gradients. The
87Rb density in the cell was maintained at an elevated
value (≈ 5 × 1010 cm−3 as measured by absorption) by
heating the interior of the magnetic shields to around
40◦C with a forced-air heat exchanger.

The photodiode signal was monitored with an oscillo-
scope and a frequency counter (Stanford Research Model
SR620). Provided the trigger threshold of the pulse gen-
erator was close enough to zero (i.e. within a few times
the noise level of the signal), oscillation would occur
spontaneously when the loop was closed at a frequency
set by the magnetic field. Optimum settings for the mag-
netometer sensitivity were found to be approximately
7 µW mean incident pump power, 7µW continuous inci-
dent probe power, and optical absorption of around 60%
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at the lock point. A sensitivity of 3 nG was achieved for
a measurement time of 1 s at these settings, as discussed
in detail in section VII.

Several alternative configurations were also imple-
mented. In place of the balanced polarimeter described
above, a configuration consisting of a polarizer nearly
orthogonal to the unrotated probe polarization followed
by a large-area avalanche photodiode (APD) module was
employed. This configuration has high detection band-
width, but suffers from lower common-mode noise rejec-
tion and greater sensitivity to stray light. Moreover, the
excess noise factor of the APD module prevents attain-
ing shot-noise-limited operation. With the APD mod-
ule, self-oscillation at frequencies up to ∼ 1 MHz was
achieved. In another configuration, frequency modula-
tion of the pump laser was employed. This configuration
worked well, but the laser frequency lock point was found
to depend subtly on the state of self-oscillation of the
magnetometer. For this reason, it was found preferable
to employ amplitude modulation of the pump laser via an
external modulator following the light pick off for laser
frequency stabilization. The magnetometer has moreover
been operated with two separate vertical-cavity surface-
emitting diode lasers (VCSELs) as pump and probe on
the D1 line of rubidium. The low power requirements,
small size, and reliable tuning of VCSELs render them
appealing for use in miniaturized and portable magne-
tometers. Amplitude modulation has also been per-
formed with an inline fiber-optic Mach-Zehnder interfero-
metric modulator, which permits further miniaturization
and considerably reduced power consumption relative to
the acousto-optic modulator.

IV. OPTICAL PHASE SHIFT

To emphasize the advantages of the two-beam arrange-
ment for the optical adjustment of the phase shift, we
note that optical pumping by linearly polarized light fa-
vors the preparation of a state whose alignment sym-
metry axis is parallel to the pump polarization. At the
center of the NMOR resonance, therefore, where there is
no phase lag between pumping and precession, the pre-
cessing axis of atomic alignment is parallel to the pump
polarization at the moment of maximal optical pumping
in the limit of short pump pulses. Consequently, if the
probe polarization is parallel to the pump polarization,
the probe polarization rotation signal will pass through
zero at the same moment, so that this optical rotation
signal is 90◦ out of phase with the pump modulation, as
seen in Eq. (1). Thus the rotation signal must be shifted
by −90◦ before being fed back as pump modulation in
order for coherent buildup at the central resonant fre-
quency to occur. Deviations from this phase shift will
result in oscillation away from line center, in such a way
as to maintain zero total phase around the loop, so long
as the magnitude of the gain is sufficient to sustain os-
cillation at the shifted frequency. As a result, precise
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FIG. 2: Demonstration of all-optical phase shift. The pump
polarization was rotated while the probe polarization was held
fixed; for each angular setting a pulse delay (equivalent to an
electronic phase shift) was applied to maintain the oscillator
on resonance. In (a), this electronic phase shift is plotted
against the polarizer angle. The straight-line fit gives a slope
of 1.98 ± 0.06, in good agreement with the expected value of
2 (see text). In (b), the oscillator frequency as a function
of phase shift is plotted. The curve agrees well with the ex-
pected form of Eq. (1), although the vertical asymptotes of
the tangent fit (solid line) do not occur at 0◦ and 180◦, prob-
ably resulting from a small (∼ 0.1%) residual contribution
of scattered pump light to the optical rotation signal. The
solid line is a fit to a tangent function. For phase shifts ap-
proaching 0◦ or 180◦, the gain becomes insufficient to sustain
self-oscillation.

control over this phase shift as a function of frequency
is required to avoid (or compensate for) systematic de-
viations of the oscillation frequency from 2ωL as a func-
tion of magnetic field. Analog filter networks capable
of generating accurate and stable 90◦ phase shifts over a
broad range of frequencies are difficult to construct. Dig-
ital phase shifters, although feasible, add complexity and
power consumption and risk degradation of performance.

The use of separate pump and probe beams offers
a natural and all-optical means of shifting the relative
phase between modulation and optical rotation. Indeed,
since the rotation of the probe polarization is determined
by the angle of the incident polarization with respect to
the axis of atomic alignment, which itself rotates uni-
formly in time, a fixed rotation of the incoming probe
polarization is equivalent to a translation in time of the
output signal, i.e., a phase shift. Since this phase shift
is purely geometrical, it has no frequency dependence,
and possesses the long-term stability of the mechanical
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FIG. 3: Response of the magnetometer to a 570µG step in
magnetic field, in the presence of an over-all bias field of
∼ 14 mG. This step is thus large compared to the resonance
line width, but small compared to the bias field. The self-
oscillation waveform was recorded on a digital storage oscil-
loscope and subsequently fit to a sinusoid in overlapping time
windows 500 µs long, spaced by 125 µs. The resulting fre-
quency is shown in part (a). In part (b), an oscilloscope trace
of the bias current proportional to the field step is shown.

mounting of the polarizers.
To demonstrate the optical phase shift of the

polarization-rotation signal, a measurement of the phase
shift of the signal as a function of the pump polarizer
angle was performed in the open-loop configuration, i.e.,
with an external frequency source modulating the pump
power and with no feedback of the optical-rotation sig-
nal. The resulting curve reveals the expected linear de-
pendence, as shown in Fig. 2(a). The observed slope
is consistent with the value of 2 expected from the fact
that the optical-rotation signal undergoes two cycles as
the atomic alignment rotates by 360◦. The effects of a
phase shift in the feedback network on the oscillation fre-
quency of the self-oscillating, closed-loop magnetometer
are shown in Fig. 2(b). As expected, the magnetometer
adjusts its oscillation frequency so that the phase shift of
the NMOR resonance cancels that of the feedback net-
work. Since the phase shift of the NMOR resonance is
an arctangent function of the detuning from resonance
(similar to a damped harmonic oscillator), this results in
a change in oscillation frequency which is proportional
to the tangent of the applied phase shift, as seen in Fig.
2(b).

V. SINUSOIDAL OUTPUT SIGNAL

In most past NMOR experiments, modulation was ap-
plied from a stable reference oscillator, and the rotation
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FIG. 4: Heterodyne measurement of magnetometer response
to a field step. Shown here is the self-oscillating rotation sig-
nal mixed down to low frequency by a lock-in amplifier with
its reference set to approximately twice the Larmor frequency.
This heterodyned signal is shown for a period of approxi-
mately 40 ms during which a sudden change of ≈ 250 µG is
made to the bias magnetic field. The local oscillator is set
midway between the two oscillation frequencies, so that the
heterodyne signal appears to reverse itself in time.

signal was demodulated by a lock-in amplifier at this ref-
erence frequency (or one of its harmonics). On the ba-
sis of the lock-in output, the reference frequency could
be updated at a rate governed by the lock-in time con-
stant, in order to maintain the resonance condition in a
slowly changing magnetic field. By contrast, in the self-
oscillating scheme, the measured rotation signal is fed
back to the modulation input in place of the reference
frequency, as shown in Fig. 1. In order to reproduce self-
consistently the effects of an external modulation, this
signal must in general be phase shifted and filtered so
that it closely resembles the original reference frequency,
as in the work of Ref. [17].

Indeed, if the probe is frequency- or amplitude-
modulated, as is the case for a single-beam experiment,
then the observed rotation signal will be the product
of the rotation signal that would be observed with an
unmodulated probe and a function which describes the
modulation. In the case of frequency modulation, for ex-
ample, the observed rotation signal for an isolated line,
Doppler broadened to a width ∆νDoppler, would be ap-
proximately

φFM (t) ≈ φun.(t)e
−(δ0−A cos 2πνmodt)2/∆ν2

Doppler ,

where φun. is the rotation that would be observed by an
unmodulated probe passing through the same sample,
δ0 is the mean detuning of the laser from resonance, A
the modulation amplitude, and νmod the modulation fre-
quency. Similarly, in the case of pulsed amplitude modu-
lation, the multiplicative modulation function would take
the form of a pulse train at the modulation frequency.
Since the atomic alignment is described by a rank 2
spherical tensor, and the corresponding spin probabil-
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ity distribution is two-fold symmetric (see, for example,
Ref. [23]), the unmodulated rotation signal is to good
approximation sinusoidal at twice the Larmor frequency,
2ωL. (Note that this argument neglects the effects of
alignment-to-orientation conversion [24], which becomes
important at relatively large light powers.) The over-all
rotation signal detected by a modulated probe, however,
is in general highly non-sinusoidal. For stable and repro-
ducible operation, such a signal would almost certainly
require filtering, which generically introduces undesirable
phase shifts. In contrast, the use of an unmodulated
probe avoids this complication altogether. The detected
rotation signal is a near-perfect sinusoid (measurements
indicate that the higher harmonics are down by more
than 50 dB). Such a signal requires only amplification to
make it mimic the reference oscillator.

VI. HIGH-SPEED RESPONSE

In order to assess the bandwidth of the magnetome-
ter, the response to rapid changes in magnetic field was
investigated by applying a small modulation to the bias
magnetic field. In one measurement, a slow square-wave
modulation was superimposed on the bias field via a sepa-
rate Helmholtz coil inside the magnetic shield. The self-
oscillation signal was then recorded on an oscilloscope
and fit in each 500 µs window to a sinusoid, with the
results shown in Fig. 3. Tracking of the field step is
quasi-instantaneous, without apparent overshoot or ring-
ing. The magnetometer response was also monitored by
heterodyning the oscillation frequency with a fixed ref-
erence frequency on a lock-in amplifier, with the lock-in
time constant set to approximately the oscillation pe-
riod (≈ 50 µs) to remove the sum-frequency component.
The resulting low-frequency beat signal, which displayed
large fractional frequency modulation, was also digitized
and recorded on an oscilloscope. Inspection of the wave-
forms so obtained revealed the same sudden shift in the
oscillation frequency as the magnetic field toggled be-
tween values (see Fig. 4). In a related experiment, the
bias field received a small sinusoidal modulation, and the
power spectrum of the self-oscillation waveform was ob-
served on a spectrum analyzer. The sidebands were ob-
served, offset from the oscillation (carrier) frequency by
an amount equal to this bias-modulation frequency; their
relative power was equal to that expected if the oscilla-
tor tracked the changing magnetic field with no delay or
diminution of amplitude out to a bias-modulation fre-
quency of at least 1 kHz.

VII. COMPARISON WITH CALCULATED

SENSITIVITY

To evaluate the performance of the magnetometer, it is
useful to calculate the performance that is expected from
measurable system parameters as a function of the mea-
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FIG. 5: Allan deviation of magnetometer as obtained from
counter. The solid line indicates the calculated sensitivity
given by Eq. (9), showing good agreement for short measure-
ment times.

surement time. The self-oscillating magnetometer is sim-
ilar in many respects to a maser, as was first pointed out
in Ref. [16]; a treatment of noise in the hydrogen maser
system is given in Ref. [25]. The read-out device envi-
sioned here is a frequency counter that measures to high
precision the elapsed time between two zero-crossings of
the rotation signal and reports a frequency which is the
integer number of zero-crossings divided by this time.

Noise in the magnetometer readings comes from sev-
eral sources. These include fundamental noise, such as
atomic and photon shot noise, as well as technical noise
from electronics. Fluctuations in the measured field also
appear as noise, but do not represent a failing of the
magnetometer. For a transmitted probe beam power of
P = 2.5 µW, the optical shot noise for an ideal polarime-
ter, given in terms of the photon energy Eph by

√

2EphP ,

is 1.1 pW/
√

Hz or 0.55 pA/
√

Hz in terms of the differen-
tial photocurrent noise. Atomic shot noise is expected to
contribute a comparable noise level for an optimized mag-
netometer [26]. Observed amplifier noise is somewhat
larger than the photon shot-noise level, or 0.8 pA/

√
Hz,

and can be considered as white noise over the relevant
bandwidth (! 5 kHz) around the operation frequency of
20 kHz. For comparison, the optimized self-oscillation
signal amplitude, hereafter denoted I0, is 14 nA.

Noise contributes to the uncertainty in the measure-
ment of the self-oscillation frequency in two essential
ways. First, it imparts random shifts to the times of the
signal zero-crossings, resulting in jitter of the frequency-
counter trigger times and of the corresponding reported
frequency. Second, noise within the NMOR resonance
bandwidth drives the atomic resonance, resulting in ran-
dom drifts of the phase of oscillation and limiting the
precision of the frequency measurement. We will con-
sider each of these in turn, both for the observed noise
level and for the photon-shot-noise limit.

Jitter of the counter triggers can be derived from a
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photocurrent difference signal

I(t) = I0 sin(2πν0t) +∆I(t).

Here, ∆I(t) is additive noise, e.g., photon shot noise
or amplifier noise, referred to the amplifier input, i.e.,
expressed as a photocurrent, and ν0 is the mean self-
oscillation frequency. Provided that ∆I(t) is small, the
zero-crossings of this signal experience a r.m.s. fluctua-
tion

∆tzero =
∆Irms

2πν0I0
. (2)

If the open-loop noise spectrum is approximately white
in the vicinity of ν0, then the r.m.s. current is simply
given by ∆Irms =

√
2SIνmax, where 2νmax is the band-

width around ν0 defined, for instance, by a filter in the
loop, and SI is the single-sided current power spectral
density, with units of A2

rms/ Hz. The r.m.s. deviation
of the interval between two zero crossings ∆tmeas is

√
2

times the deviation of each separately, so that the total
uncertainty in the frequency reading of the magnetome-
ter due to trigger jitter is

∆νjitt = ν0∆tmeas/T

=
(SIνmax)1/2

πTI0
, (3)

where T is the measurement duration.
The second effect of noise on the operation of the mag-

netometer is due to the feedback network that produces
self-oscillation. As shown below, noise that is within the
linewidth of the NMOR resonance mimics a fluctuat-
ing phase shift in the self-oscillating loop. This phase
shift produces random fluctuations in the oscillation fre-
quency, inducing diffusion of the over-all phase of oscil-
lation. For notational simplicity, let us first consider a
single frequency component of the noise at a frequency
ν0 + νoff , where νoff is referred to as the offset frequency.
For an open-loop magnetometer, i.e., with modulation
supplied by an external frequency source tuned to the
NMOR resonance and no feedback of the optical rota-
tion signal, the resulting photocurrent difference signal
would be

I(t) = I0 sin(2πν0t) + ε sin(2π(ν0 + νoff)t)

≈ I0 sin

(

2πν0t +
ε

I0
sin(2πνoff t)

)

, (4)

where ε is taken to be small, and a term contributing only
to amplitude modulation of the signal has been neglected.
The phase of the noise component has been chosen arbi-
trarily but plays no role in what follows. Equation (4)
shows that the effect of this noise component is to modu-
late the phase of the open-loop signal with an amplitude
ε/I0 at frequency νoff . When the self-oscillating loop
is closed, the oscillation responds to this noise-induced
phase shift by shifting the frequency of oscillation in such

a way as to keep the net phase shift around the loop zero.
The magnitude of the resulting frequency modulation of
the self-oscillating signal is readily calculated from Eq.
(1), which may be approximated over the central por-
tion of the resonance as linear, i.e., νoff ≈ γφ/4π, so that
the amplitude of the induced frequency modulation is
γε/4πI0. The resulting self-oscillation signal is

I(t) = I0 sin

∫ t

0
dt′

(

2πν0 +
γε

2I0
sin 2πνofft′

)

= I0 sin

(

2πν0t −
γε

4πI0νoff
cos 2πνofft

)

, (5)

where the global phase of oscillation has been taken to be
zero at t = 0. In analogy to Eq. (2), the r.m.s. deviation
of a zero-crossing of this signal at a randomly chosen time
is

∆tzero =
γε

4πI0νoff

1

2πν0

√
2
,

and the corresponding frequency uncertainty from phase
diffusion is

∆νdiff =
γε

4πI0νoff

1

2πT
. (6)

Although this expression diverges for νoff → 0, in reality
a measurement lasting a time T imposes an effective low-
frequency cut-off of ≈ 1/T . To take into account the fact
that the noise contains many incoherent spectral compo-
nents, rather than a single monochromatic component,
one must add these components in quadrature. Thus, it
is sufficient to replace the original mean square current
modulation ε2/2 at frequency νoff , by the photocurrent
noise power SIdνoff in a range dνoff around frequency
ν0 + νoff , and integrate the result over the appropriate
range of frequency. For a measurement time T , the min-
imum resolvable frequency is ≈ 1/T . The maximum fre-
quency at which this noise-induced frequency shift occurs
is ≈ γ/2, but for times T " 2/γ, which in practice in-
clude all times for which this type of noise is dominant,
we may reasonably approximate the range of integration
as extending to infinity. Note that noise on either side of
ν0 contributes equally, so that the total integral is twice
the integral evaluated on the positive side only. Thus Eq.
(6) must be modified to

∆νdiff ≈
γ
√

2

8π2I0T

∣

∣

∣

∣

∣

2

∫

∞

1/T
dνoff

SI(ν0 + νoff)

ν2
off

∣

∣

∣

∣

∣

1/2

≈
γ

4π2
√

T

S1/2
I

I0
. (7)

The photocurrent noise spectrum SI has been assumed
white over the range of integration in evaluating the in-
tegral.

This intra-resonance noise can also be understood in
terms of phase diffusion [27]. Indeed, although the fre-
quency of the oscillation is stabilized to twice the Larmor
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frequency in the self-oscillating scheme, the global phase
of oscillation experiences no feedback or restoring force,
and is thus subject to an effective Brownian motion or
diffusion, where shot noise or amplifier noise provides a
stochastic driving force. In this picture, the phase un-
dergoes a random walk, with a step size given by the
r.m.s. noise within the resonance and a time step given
by ∼ 1/γ. Explicitly, the total phase noise within the

resonance yields a step size ∆φstep ≈ (S1/2
I /I0)

√

γ/2π.
After a time T the number of steps is approximately
Nsteps = γT , so that the total frequency uncertainty
given by

∆νdiff ≈
∆φstep

2πT

√

Nsteps

≈
1

(2π)3/2

S1/2
I

I0

γ

T 1/2
, (8)

which agrees up to a numerical factor with Eq. (7)
Numerically, for the experimental parameters dis-

cussed above, we have S1/2
I /I0 = 6 × 10−5 Hz−1/2,

γ = 2π × 80 Hz, and νmax = 5 kHz (the measured band-
width of an LC filter in the loop), so that Eqs. (3) and
(7) imply a magnetic-field sensitivity limit of

∆B =







(

1.0 nG

T/1 s

)2

+

(

0.54 nG
√

T/1 s

)2






1/2

. (9)

Equation (9) is in good agreement with the measured
data for times below ∼ 0.1 s, as shown in Fig. 5, while
above ∼ 0.1 s measurements fall short of calculated per-
formance, as discussed below.

It should be noted that the initial 1/T dependence of
the sensitivity is non-optimal. If information about the
phase during the entire duration T were retained and
the frequency extracted (e.g. by least-squares fitting),
then this dependence could be improved by an addi-
tional factor of approximately

√

Tsamp/T , where Tsamp

is a sampling time, provided 1/Tsamp is smaller than the
noise bandwidth, e.g., the filter frequency νmax. The im-
proved scaling would then be ∝ T−3/2. For measurement
times " 1 s, however, this is not a limiting factor suffi-
cient to outweigh the frequency counter’s considerable
convenience. The result of Eq. (9) is within a factor of
two of the optical-shot-noise limit for the same system
parameters, although with a quieter photodiode ampli-
fier, further optimization of light powers, detunings, and
87Rb density should permit operation with narrower res-
onance lines and considerable consequent improvement.

For measurement times T exceeding ∼ 0.1 s, additional
sources of noise not present in the model discussed so far
become dominant, obscuring the phase-diffusion noise.
In order to distinguish between magnetic and instrumen-
tal noise, we have measured fluctuations of ambient mag-
netic fields with a fluxgate magnetometer external to the
shields at approximately 20µG/

√
Hz above a 1/f cor-

ner frequency of approximately 0.3 Hz. With a measured

shielding factor of 3× 105, this implies a negligibly small
white magnetic-field noise of around 70 pG/

√
Hz at the

vapor cell. The expected average noise on the supplied
bias field inside the shield is better than 6 nG/

√
Hz be-

tween 0.1 Hz and 100 Hz. This value is of the same or-
der of magnitude as the observed Allan deviation floor,
although direct and reliable measurements of this bias
current have not been achieved. Noise on the bias-field
current could be distinguished from other sources by use
of a magnetic gradiometer (see, for example, a description
of a gradiometer based on a pair of FM NMOR sensors
in Ref. [28]), though the small size of our magnetic shield
has so far precluded such a measurement.

Other noise sources include sensitivities of the oscilla-
tion frequency to laser powers and detuning. A sensi-
tivity to pump or probe power arises, for instance, when
the feedback-network phase shift deviates from the value
which produces maximal oscillation amplitude. Since the
NMOR phase shift depends on the resonance line width
as in Eq. (1), while the line width depends on optical
power through the effect of power-broadening, changes in
pump or probe power produce changes in phase shift and
corresponding deviations of the self-oscillation frequency.
This effect vanishes to first order precisely on the NMOR
resonance; additional mechanisms for translating power
and detuning fluctuations into oscillation-frequency fluc-
tuations are currently being investigated.

VIII. CONCLUSION

We have demonstrated a self-oscillating two-beam
magnetometer based on nonlinear magneto-optical ro-
tation and shown that the independent adjustment of
pump and probe polarizations provides a powerful and
frequency-independent means of supplying the phase
shift necessary for self-oscillation. Moreover, the use of
an unmodulated probe eliminates the necessity of elabo-
rate filtering procedures, producing instead a clean sine
wave suitable for feeding back as the self-modulation sig-
nal. The resulting device possesses a high bandwidth
and a measured sensitivity of 3 nG at 1 s. Considerable
improvement, approaching the fundamental atomic and
optical shot-noise limit of ! 30 pG in 1 s measurement
time for a ∼ 6 cm3 cell, is expected through a more thor-
ough control of light-power-dependent, laser-frequency-
dependent, and electronic phase shifts, as well as through
re-optimization using a quieter amplifier. The funda-
mental constituents of this magnetometer are small and
lightweight, lending themselves well to designs for the
field and for space. Operation in the geomagnetic range
of fields has been achieved. In future work, the robust-
ness of the magnetometer in an unshielded environment
and an arbitrarily directed geomagnetic field will be in-
vestigated. Performance in the presence of splitting of
the resonance line by the quadratic Zeeman shift will
also be evaluated.
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